Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 117: 154911, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276724

RESUMEN

BACKGROUND: Nervonic acid (NA) - a type of bioactive fatty acid that is found in natural sources - can inhibit inflammatory reactions and regulate immune system balance. Therefore, the use of NA for the treatment of neurodegenerative diseases has received considerable attention. Our previous study found that NA inhibited inflammatory responses in the brain of Parkinson's disease (PD) mouse models. In addition to the brain, PD is also associated with visceral organ dysfunction, especially impaired liver function. Thus, studying the role of NA in PD-mediated inflammation of the liver is particularly important. METHODS: A combined transcriptome and metabolomic approach was utilized to investigate the anti-inflammatory effects of NA on the liver of PD mice. Inflammatory signaling molecules and metabolic pathway-related genes were examined in the liver using real-time PCR and western blotting. RESULTS: Liver transcriptome analysis revealed that NA exerted anti-inflammatory effects by controlling several pro-inflammatory signaling pathways, such as the down-regulation of the tumor necrosis factor and nuclear factor kappa B signaling pathways, both of which were essential in the development of inflammatory disease. In addition, liver metabolomic results revealed that metabolites related to steroid hormone biosynthesis, arachidonic acid metabolism, and linoleic acid metabolism were up-regulated and those related to valine, leucine, and isoleucine degradation pathways were down-regulated in NA treatment groups compared with the PD model. The integration of metabolomic and transcriptomic results showed NA significantly exerted its anti-inflammatory function by regulating the transcription and metabolic pathways of multiple genes. Particularly, linoleic acid metabolism, arachidonic acid metabolism, and steroid hormone biosynthesis were the crucial pathways of the anti-inflammatory action of NA. Key genes in these metabolic pathways and key molecules in inflammatory signaling pathways were also verified, which were consistent with transcriptomic results. CONCLUSION: These findings provide novel insights into the liver protective effects of NA against PD mice. This study also showed that NA could be a useful dietary element for improving and treating PD-induced liver inflammation.


Asunto(s)
Hepatitis , Redes y Vías Metabólicas , Transducción de Señal , Redes y Vías Metabólicas/efectos de los fármacos , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Hepatitis/tratamiento farmacológico , Hepatitis/metabolismo , Enfermedad de Parkinson/metabolismo , Ratones Endogámicos C57BL , Masculino , Femenino
2.
Biochem Pharmacol ; 209: 115411, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36639003

RESUMEN

Nervonic acid (NA) is one of the long-chain fatty acids with significant biological activity that has been widely studied in recent years. It is believed that NA may play a crucial role in the recovery of human cognitive disorders. Although many literatures have shown that NA has some neuroprotective effect in experimental animal models, the detailed neuroprotective mechanism of NA is still poorly understood. In this study, we applied behavioral, transcriptomic and metabolomic approaches to analyze the neuroprotective effect of NA and its molecular mechanism in AD (Alzheimer's disease) model mice. We demonstrated that NA improved motor skills and learning and memory abilities of mice at the behavioral level. To further understand the specific pathways involved in this protective effect, we applied the metabolomics and transcriptomics profilings and focused on the expression patterns of genes that NA might alter, particularly those related to the accumulation of metabolites in the brain. According to the results, pathways related to neuroinflammation were significantly increased in LPS (lipopolysaccharide)-induced AD mice compared with the normal control, and pathways related to neuronal growth and synaptic plasticity were significantly downregulated. When NA was used for protection, these signaling pathways induced by LPS were partially reversed. At the same time, compared with the AD model group, upregulation of arachidonic acid metabolism, purine metabolism, and primary bile acid biosynthesis and downregulation of amino acid metabolic pathways were particularly pronounced in the NA treatment group. We also verified the enzymes of some metabolic pathways were consistent with transcriptome result. In summary, our results show that NA can significantly ameliorate LPS-induced neuroinflammation and deterioration of learning and memory, and exerts a neuroprotective function through regulation of multiple gene transcription and metabolism pathways. In particular, the arachidonic acid metabolism which related to inflammation and the amino acids metabolism which related to the synthesis of neurotransmitters were most significant response to NA treatment. Our results provided the first preliminary evidences for molecular mechanism investigation of NA from a combined transcriptome and metabolome perspective.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratones , Humanos , Animales , Lipopolisacáridos , Fármacos Neuroprotectores/uso terapéutico , Transcriptoma , Enfermedades Neuroinflamatorias , Metabolómica/métodos , Enfermedad de Alzheimer/metabolismo , Ácidos Araquidónicos
3.
Food Funct ; 14(1): 277-291, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36484706

RESUMEN

Nervonic acid is one of the most promising bioactive fatty acids, which is believed to be beneficial for the recovery of human cognitive disorders. However, the detailed neuroprotective effects and mode of action of nervonic acid have not yet been fully elucidated. In this study, we used an MPTP-stimulated mouse Parkinson's disease (PD) model as a target to investigate the neuroprotective effects by behavioral tests and integrative analysis of trancriptomes and metabolomes of PD mouse brain with nervonic acid injections. The KEGG pathway enrichment analysis of transcriptomes showed that the genes involved in neuroinflammation were significantly increased after MPTP induction and have been greatly inhibited by nervonic acid injection, while nervonic acid also greatly improved nerve growth and synaptic plasticity pathways which were significantly downregulated by MPTP. At the same time, the upregulation of oleic acid and arachidonic acid metabolism pathways and the downregulation of amino acid metabolism pathways in metabolomes were particularly highlighted in the nervonic acid protection groups compared with the PD model. Meanwhile, it was found that arachidonic acid, oleic acid and taurine play an important regulatory role in the neuroprotective mechanism of nervonic acid through fatty acid metabolism by integrative analysis. Therefore, our study laid a solid foundation for further studies on the specific role of nervonic acid in the inhibition of PD at the level of metabolic regulation.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Animales , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Transcriptoma , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Ácidos Araquidónicos , Ácidos Oléicos , Ratones Endogámicos C57BL , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Modelos Animales de Enfermedad
4.
Metabolites ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36295824

RESUMEN

Lappaconitine (LA) is a C-18 diterpene alkaloid isolated from Aconitum sinomontanum Nakai that has been shown to relieve mild to moderate discomfort. Various researchers have tried to explain the underlying mechanism of LA's effects on chronic pain. This article uses metabolomics technology to investigate the metabolite alterations in the dorsal root ganglion (DRG) when lappaconitine hydrobromide (LAH) was injected in an inflammatory pain model, to explain the molecular mechanism of its analgesia from a metabolomics perspective. The pain model used in this study was a complete Freund's adjuvant (CFA)-induced inflammatory pain model in rats. There were two treatment groups receiving different dosages of LAH (4 mg/kg LAH and 8 mg/kg LAH). The analgesic mechanism of LAH was investigated with an analgesic behavioral test, tissue sections, and metabolomics. The results of the analgesic behavioral experiment showed that both 4 mg/kg LAH and 8 mg/kg LAH could significantly improve the paw withdrawal latency (PWL) of rats. The tissue section results showed that LAH could reduce the inflammatory response and enlargement of the paw and ankle of rats and that there was no significant difference in the tissue sections of the DRG. The metabolomics results showed that retinol metabolism and glycerophospholipid metabolism in the CFA-induced inflammatory pain model were significantly affected and may exacerbate the inflammatory reactions and initiate persistent pain; in addition, the linoleic acid metabolism, arachidonic acid metabolism, and alanine, aspartate, and glutamate metabolism were also slightly affected. Among them, the alpha-linolenic acid metabolism was up-regulated after LAH treatment, while the retinol metabolism was down-regulated. These results suggest that LAH could effectively reduce inflammatory pain and might achieve this by regulating the lipid metabolism in the rat DRG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...